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Uh. Security?
● Isn't this about:

– Clustering
– High Availability
– Replication



 

Uh, Security?
● Even more important in a 

distributed world
● Many different users, hosts and 

networks involved
● What do you relly know about 

«your» cloud?



 

Security with PostgreSQL replication

● Applies differently to different 
systems

● «Slony-style»
– Includes Londiste, Bucardo etc

● «PITR-style»
– Warm/Hot standby, streaming repl, etc
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Keys to the kingdom
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through here



 

Over the replication channel
● Data is unencrypted (usually)
● Data is unfiltered
● Data is assumed valid
● And yet...

– Reading the data may not be the biggest 
problem



 

Slony-style systems
● Requires high-priv account

– Or if restricted, still full data access
– Read and write

● In both directions
● Not restricted to replication



 

Slony-style systems
● Probably most common:

– User: slony
– Password: slony

● Second most common?
– User: slony
– Password: <none>



 

So what can we do?
● Use a strong password for 

replication user
– There are no manual logins after all
– Don't even consider «trust»
– Use certificates!

● Use different replication users for 
different databases/parts

– Restrict damage



 

Utilize pg_hba.conf
● Allow replication user only from 

replication partners
● Allow only replication user from 

replication partners



 

But....
● My replication connection is on a 

secure network!



 

But....
● My replication connection is on a 

secure network!

● No, it's not. Really.
– Far too valuable to be «assumed secure»



 

So secure the connection
● Enable SSL
● Require SSL

– (on both client and server)

● Overhead actually not so bad
– Slony uses persistent connections

● That's the easy part...



 

Configure (limited) PKI
● Set up PKI

– Just for replication if not used for app

● Hand out both client and server 
certificates

● Validate certificates
– libpq: sslmode=validate-[ca|full]
– pg_hba.conf: clientcert=1



 

Warm/Hot Standby
● Based on copying files
● Files are not signed/verified
● Transport security is handled 

outside



 

Transfer user
● Always use a separate user
● Don't use the PostgreSQL service 

user



 

Secure transfer
● rsync+ssh

– Security through SSH
– Integrity/atomicity through rsync

● Use SSHv2 (but you knew that)
● Transfer/verify server-side SSH 

key!
● Use StrictHostKeyChecking=yes



 

Secure transfer
● Use ~/.ssh/authorized_keys
● Restrict command access

– Only allow rsync access

command="rsync --server --sender -vlogDtpre.i . wal/", 
no-port-forwarding,no-agent-forwarding,no-X11-
forwarding,no-pty ssh-rsa (...) replication@local



 

Streaming replication in 9.0
● Uses libpq for connections
● User must be superuser
● «Fake» database replication
● So secure the same way as Slony



 

Monitor!
● IDS
● «tcpdump |grep SELECT»
● Log connections/disconnections



 

Audit!
● If you're not auditing pg_hba.conf 

today...
● Now is a good time to start!
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Questions?

magnus@hagander.net
Twitter: @magnushagander

http://blog.hagander.net
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