

Replication & Database
Security

Char(10)
Oxford, United Kingdom

Magnus Hagander
Redpill Linpro AB

Uh. Security?
● Isn't this about:

– Clustering
– High Availability
– Replication

Uh, Security?
● Even more important in a

distributed world
● Many different users, hosts and

networks involved
● What do you relly know about

«your» cloud?

Security with PostgreSQL replication

● Applies differently to different
systems

● «Slony-style»
– Includes Londiste, Bucardo etc

● «PITR-style»
– Warm/Hot standby, streaming repl, etc

Steps to security

Application

Database

OS/Physical

Steps to security

Application

Database

OS/Physical

Steps to security

Application

Database

OS/Physical

Then we add distribution

Database

OS/Physical

Application Application

Then we add distribution

Database

OS/Physical

Application Application

Database

OS/Physical

Replication

Keys to the kingdom

Database

OS/Physical

Application Application

Database

OS/Physical

Replication

Everything passes
through here

Over the replication channel
● Data is unencrypted (usually)
● Data is unfiltered
● Data is assumed valid
● And yet...

– Reading the data may not be the biggest
problem

Slony-style systems
● Requires high-priv account

– Or if restricted, still full data access
– Read and write

● In both directions
● Not restricted to replication

Slony-style systems
● Probably most common:

– User: slony
– Password: slony

● Second most common?
– User: slony
– Password: <none>

So what can we do?
● Use a strong password for

replication user
– There are no manual logins after all
– Don't even consider «trust»
– Use certificates!

● Use different replication users for
different databases/parts

– Restrict damage

Utilize pg_hba.conf
● Allow replication user only from

replication partners
● Allow only replication user from

replication partners

But....
● My replication connection is on a

secure network!

But....
● My replication connection is on a

secure network!

● No, it's not. Really.
– Far too valuable to be «assumed secure»

So secure the connection
● Enable SSL
● Require SSL

– (on both client and server)

● Overhead actually not so bad
– Slony uses persistent connections

● That's the easy part...

Configure (limited) PKI
● Set up PKI

– Just for replication if not used for app

● Hand out both client and server
certificates

● Validate certificates
– libpq: sslmode=validate-[ca|full]
– pg_hba.conf: clientcert=1

Warm/Hot Standby
● Based on copying files
● Files are not signed/verified
● Transport security is handled

outside

Transfer user
● Always use a separate user
● Don't use the PostgreSQL service

user

Secure transfer
● rsync+ssh

– Security through SSH
– Integrity/atomicity through rsync

● Use SSHv2 (but you knew that)
● Transfer/verify server-side SSH

key!
● Use StrictHostKeyChecking=yes

Secure transfer
● Use ~/.ssh/authorized_keys
● Restrict command access

– Only allow rsync access

command="rsync --server --sender -vlogDtpre.i . wal/",
no-port-forwarding,no-agent-forwarding,no-X11-
forwarding,no-pty ssh-rsa (...) replication@local

Streaming replication in 9.0
● Uses libpq for connections
● User must be superuser
● «Fake» database replication
● So secure the same way as Slony

Monitor!
● IDS
● «tcpdump |grep SELECT»
● Log connections/disconnections

Audit!
● If you're not auditing pg_hba.conf

today...
● Now is a good time to start!

Replication & Database
Security

Questions?

magnus@hagander.net
Twitter: @magnushagander

http://blog.hagander.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

